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Abstract
Enormous successes have been made by quantum algorithms during the last
decade. In this paper, we combine the quantum game with the problem of data
clustering, and then develop a quantum-game-based clustering algorithm, in
which data points in a dataset are considered as players who can make decisions
and implement quantum strategies in quantum games. After each round of a
quantum game, each player’s expected payoff is calculated. Later, he uses
a link-removing-and-rewiring (LRR) function to change his neighbors and
adjust the strength of links connecting to them in order to maximize his payoff.
Further, algorithms are discussed and analyzed in two cases of strategies,
two payoff matrixes and two LRR functions. Consequently, the simulation
results have demonstrated that data points in datasets are clustered reasonably
and efficiently, and the clustering algorithms have fast rates of convergence.
Moreover, the comparison with other algorithms also provides an indication of
the effectiveness of the proposed approach.

PACS numbers: 89.75.−k, 03.67.−a, 02.50.Le, 43.60.Lq

1. Introduction

Quantum computation is an extremely exciting and rapidly growing field. More recently,
an increasing number of researchers with different backgrounds, ranging from physics,
computer sciences and information theory to mathematics and philosophy, have been involved
in researching properties of quantum-based computation [1]. During the last decade, a series
of significant breakthroughs have been made. One was that in 1994 Peter Shor surprised the
world by proposing a polynomial-time quantum algorithm for integer factorization [2], while
in the classical world the best-known classical factoring algorithm works in superpolynomial
time. Three years later, in 1997, Lov Grover proved that a quantum computer could
search an unsorted database in the square root of the time [3]. Meanwhile, Brassard et al
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combined ideas from Grover’s and Shor’s quantum algorithms to propose a quantum counting
algorithm [4].

In recent years, much interest has focused on quantum game theory and considerable work
has been done. For instance, Meyer [5] studied the Penny Flip game in the quantum world
firstly. His result showed that if a player was allowed to implement quantum strategies, he
would always defeat his opponent who played the classical strategies and increase his expected
payoff as well. Eisert et al [6] quantized the prisoners’ dilemma and demonstrated that the
dilemma could be escaped when both players resort to quantum strategies. Flitney et al [7]
generalized Eisert’s result, the miracle move, i.e. the result of the game would move toward the
quantum player’s preferred result, while the other player used classical strategies. Marinatto
et al [8] investigated the Battle of the Sexes game in quantum domain. Their result showed that
there existed a unique equilibrium in the game, when the entangled strategies were allowed.
Lee et al [9] reported that the quantum game is more efficient than the classical game, and
they found an upper bound for this efficiency. Besides, some experiments about the quantum
games have also been implemented on different quantum computers [10–12]. For more details
about quantum games, see [13].

Successes achieved by quantum algorithms make us guess that powerful quantum
computers can figure out solutions faster and better than the best-known classical counterparts
for certain types of problems. Furthermore, it is more important that they offer a new way
to find potentially dramatic algorithmic speed-ups. Therefore, we may ask naturally: can we
construct quantum versions of classical algorithms or present new quantum algorithms to solve
the problems in pattern recognition faster and better on a quantum computer? Following this
idea, some researchers have proposed their novel methods and demonstrated exciting results
[14–18].

In addition, data clustering is a main branch of pattern recognition, which is widely
used in many fields such as pattern analysis, data mining, information retrieval and image
segmentation. In these fields, however, there is usually little a priori knowledge available
about the data. In response to these restrictions, clustering methodology come into being
which is particularly suitable for the exploration of interrelationships among data points. Data
clustering is the formal study of algorithms and methods for grouping or classifying unlabeled
data points [19]. In other words, its task is to find the inherent structure of a given collection of
unlabeled data points and group them into meaningful clusters [19]. In this paper, we attempt
to combine the quantum game with the problem of data clustering in order to establish a novel
clustering algorithm based on quantum games. In our algorithms, unlabeled data points in a
dataset are regarded as players who can make decisions in quantum games. On a time-varying
network formed by players, each player is permitted to use quantum strategies and plays a 2×2
entangled quantum game against each one of his neighbors, respectively. Later, he applies
a link-removing-and-rewiring (LRR) function to remove the links of neighbors with small
payoffs and create new links to neighbors with higher payoffs at the same time. Furthermore,
the strength of links between a player and his neighbors is different from one another, which
is updated by the Grover iteration. During quantum games, the structure of network and
the strength of links between players tend toward stability gradually. Finally, if each player
only connects to the neighbor with the highest strength, the network will naturally divide into
several separate parts, each of which corresponds to a cluster.

The remainder of this paper is organized as follows: section 2 introduces some important
concepts about the quantum computation and the quantum prisoners’ dilemma briefly. In
section 3, the algorithms are established in two cases of strategies, payoff matrices and
link-removing-and-rewiring (LRR) functions, and then they are elaborated and analyzed. In
section 4, the relationship between the number of nearest neighbors and the number of clusters
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Table 1. Payoff matrix for the prisoners’ dilemma.

C = 0 D = 1

C = 0 R = 3 S = 0
D = 1 T = 5 P = 1

is discussed. Next, the effect of the cost in the SD-like payoff matrix is analyzed, and the
relationship between the total payoffs and the rates of convergence of algorithms is explained.
In section 5, those datasets used in the simulations are introduced briefly, and then results of
algorithms are demonstrated. The conclusion is given in section 6.

2. Quantum computation and quantum game

2.1. Quantum computation

The elementary unit of quantum computation is called the qubit, which is typically a
microscopic system, such as an atom, a nuclear spin or a polarized photon. In quantum
computation, the Boolean states 0 and 1 are represented by a prescribed pair of normalized
and mutually orthogonal quantum states labeled as {|0〉, |1〉} to form a ‘computational basis’
[20]. Any pure state of the qubit can be written as a superposition state α|0〉 + β|1〉 for some α

and β satisfying |α|2 + |β|2 = 1 [20]. A collection of n qubits is called a quantum register of
size n, which spans a Hilbert space of 2n dimensions, so that 2n mutually orthogonal quantum
states can be available.

Quantum state preparations, and any other manipulations on qubits, have to be performed
by unitary operations. A quantum logic gate is a device which performs a fixed unitary
operation on selected qubits in a fixed period of time, and a quantum circuit is a device
consisting of quantum logic gates whose computational steps are synchronized in time [20].
The most common quantum gate is the Hadamard gate, which acts on a qubit in state |0〉 or
|1〉 to produce ⎧⎨

⎩
|0〉 H→ 1√

2
|0〉 + 1√

2
|1〉

|1〉 H→ 1√
2
|0〉 − 1√

2
|1〉,

H = 1√
2

(
1 1
1 −1

)
. (1)

For more details see [20, 21].

2.2. Quantum prisoners’ dilemma

The prisoners’ dilemma (PD), a well-known example in the classical game theory, is an abstract
of many phenomena in the real world and it has been widely used in plenty of scientific fields.
In this game, each of two players has two optional strategies, cooperation (C) and defection
(D). Later, he chooses one strategy against the other’s for maximizing his own payoff, so does
the other side at the same time, but both sides do not know the opponent’s strategy. As a
result, each player receives a payoff which depends on his selected strategy, where the payoff
matrix under different strategy profiles is described in table 1. According to the classical game
theory, the strategy profile (defection, defection) is the unique Nash equilibrium [22, 23], but
unfortunately it is not Pareto optimal [24].

In the quantum game, however, thanks to the quantum strategies, the dilemma in the
classical game can be escaped in a restricted strategic space [6]. The physical model of
quantum prisoners’ dilemma presented by Eisert [6] is shown in figure 1.
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Figure 1. Block diagram of the system.

If the possible outcomes of the classical strategies, C = 0 and D = 1, are assigned to two
basis vectors {|C = 0〉, |D = 1〉} in Hilbert space, respectively, then at any time the state of the
game may be represented by a vector in the space spanned by the basis {|00〉, |01〉, |10〉, |11〉}
[6]. Assume the initial state of the game is |ψ0〉 = Ĵ |00〉, where Ĵ is an entangling operator
which is known to both players. For a two-player game with two pure strategies, the general
form of Ĵ may be written as [25, 26]

Ĵ (γ ) = exp

(
i
γ

2
σ⊗2

x

)
= I⊗2 cos

γ

2
+ iσ⊗2

x sin
γ

2
(2)

where γ ∈ [0, π/2] is a measure of entanglement of a game. When γ = π/2, there is a
maximally entangled game, in which the entangling operator takes the form

Ĵ (γ ) = 1√
2

(
I⊗2 + iσ⊗2

x

)
. (3)

Next, each player chooses a unitary operator Ŷ1(Ŷ2) from the strategy space S1(S2) and
operates it on the qubit that belongs to him, which makes the game in a state (Ŷ1 ⊗ Ŷ2)Ĵ |00〉.
Specifically, the unitary operators Ĉ and D̂ that correspond to the strategies, cooperation and
defection, are given below [6]:

Ĉ =
(

1 0
0 1

)
, D̂ =

(
0 1

−1 0

)
. (4)

In the end, before a projective measurement in the basis {|0〉, |1〉} is carried out, the final
state is

|ψf 〉 = Ĵ †(Ŷ1 ⊗ Ŷ2)Ĵ |00〉. (5)

Thus, the player’s expected payoff is written as

z = R|〈ψf |00〉|2 + S|〈ψf |01〉|2 + T |〈ψf |10〉|2 + P |〈ψf |11〉|2. (6)

For more details see [6, 27].

3. Algorithm

In the section, we will combine the model of the quantum game with the problem of data
clustering, and then establish clustering algorithms based on quantum games. Assume an
unlabeled dataset X = {X1, X2, . . . , XN }, which are distributed in an m-dimensional metric
space. Each data point in the dataset is considered as a player in quantum games who can make
decisions and always hope to maximize his payoff. In the metric space, there is a distance
function d : X × X −→ R, satisfying that the closer the two players, the smaller the output is.
Based on the distance function, a k-nearest-neighbor (knn) network as a weighted and directed
network, G0(X, E0, d), may be created among data points by adding k edges directed toward
its k nearest neighbors for each player.
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Definition 1. If there is a set X with N players, X = {X1, X2, · · · , XN }, the weighted and
directed knn network, G0(X, E0, d), is created as below:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X = {Xi , i = 1, 2, . . . , N}
E0 = ⋃N

i=1 E0(i)

E0(i) = {e0(Xi , Xj ) | j ∈ �0(i)}

�0(i) =
{
j |j = argmin k

Xh∈X
({d(Xi , Xh), Xh ∈ X})

}
.

(7)

Here, each player in the set X corresponds to a vertex in the network G0(X, E0, d); E0 is a
link set and a link in the network represents certain relationship between a pair of players; the
distances denote the weights over links; the function, argmin k(·), is to find k nearest neighbors
of a player which construct a neighbor set, �0(i); the subscript ‘0’ is the initial time step.

It is worth noting that the strength of links between a player Xi and his k nearest neighbors
represented by ρt−1(Xi , Xj ), j ∈ �t−1(i)(t � 1) is time varying, whose initial value is
calculated by

ρ0(Xi , Xj ) =
{

1/|�0(i)| = 1/k, j ∈ �0(i)

0, otherwise,
(8)

where the symbol | · | denotes the cardinality of a set.
After the initial connections are constructed among players (data points), on this weighted

and directed knn network, a quantum game can be defined as follows.

Definition 2. A quantum game 
 = {X,Gt , S, Zt } on a network Gt is a four-tuple: X is a
set of players; Gt represents the connections among players; S = {s(i), i = 1, 2, . . . , N}
represents a set of players’ strategies including the full range of quantum strategies;
Zt = {zt (i), i = 1, 2, . . . , N} represents a set of players’ expected payoffs. Here, the
variable t denotes the time step (the number of iterations). In each round, players choose their
strategies simultaneously, and each player can only observe its neighbors’ payoffs but does
not know the strategy profiles of all other players in X.

3.1. Cases of quantum strategies and payoff matrices

First, each player selects a strategy from his strategy set, and then plays a 2 × 2 entangled
quantum game against one of his k neighbors, respectively. In the classical 2×2 game, such as
the prisoners’ dilemma, usually there are only two pure strategies, cooperation and defection,
but in the quantum game, one can design different unitary operators as strategies, i.e. the
strategy set S may be identified with some subset of the group of 2 × 2 unitary matrices [6].
Here, for the purpose of clustering and simplifying computation, the strategy set of a player
Xi is restricted in a set S1 = {Ĥ , D̂} or S2 = {F̂t−1(i, j), D̂}, and then two cases of strategy
sets are described, respectively.

Case 1. In this case, a player and his opponent can apply strategies in S1 = {Ĥ , D̂}. When
a player Xi use the Hadamard matrix Ĥ as a strategy, his opponent (neighbor) Xj has two
optional strategies {Ĥ , D̂}, but which strategy is chosen is dependent on the strength of the
link between them, as is a rule of the clustering algorithm. If the strength ρt−1(Xj , Xi ) equals
zero, i.e. there is no link directed from the player Xj to the player Xi , then the player Xj

will apply the strategy ‘defection’ (D̂). Alternatively, if ρt−1(Xj , Xi ) > 0, namely mutual
connections between them, the player Xj implements the strategy Ĥ . If the initial state of the
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Table 2. PD-like payoff matrix.

C = 0 D = 1

C = 0 R = 0.6ωt−1(Xi , Xj ) S = 0.01ωt−1(Xi , Xj )

D = 1 T = ωt−1(Xi , Xj ) P = 0.2ωt−1(Xi , Xj )

Table 3. SD-like payoff matrix.

C = 0 D = 1

C = 0 R = ωt−1(Xi , Xj ) − c

2 S = ωt−1(Xi , Xj ) − c

D = 1 T = ωt−1(Xi , Xj ) P = 0.01ωt−1(Xi , Xj )

game is |ψ0〉 = Ĵ |00〉, by applying the model of the quantum game the final state of the game
is

|ψf,j 〉 =
{

1
2 (|00〉 − i|01〉 − i|10〉 + |11〉), Ĥ ⊗ Ĥ

1√
2
(i|00〉 − |01〉), Ĥ ⊗ D̂.

(9)

Case 2. The strategy set S2 = {F̂t−1(i, j), D̂} is adopted in this case. The strategy F̂t−1(i, j),

F̂t−1(i, j) =
( √

ρt−1(Xi , Xj )
√

1 − ρt−1(Xi , Xj )√
1 − ρt−1(Xi , Xj ) −√

ρt−1(Xi , Xj )

)
,

is a general form of Hadamard matrix Ĥ whose elements are associated with the strength of
links ρt−1(Xi , Xj ). When ρt−1(Xi , Xj ) = 0.5, the strategy F̂t−1(i, j) recovers the strategy
Ĥ . Similarly, the neighbor Xj , when ρt−1(Xj , Xi ) = 0, applies the strategy ‘defection’ (D̂),
while using the strategy F̂t−1(i, j) when ρt−1(Xj , Xi ) > 0. If the initial state of the game is
|ψ0〉 = Ĵ |00〉, after their moves, the final state of the game is

|ψf,j 〉 =

⎧⎪⎨
⎪⎩

√
ρ1ρ2|00〉 − i

√
ρ2(1 − ρ1)|01〉

−i
√

ρ1(1 − ρ2)|10〉 +
√

(1 − ρ1)(1 − ρ2)|11〉, F̂t−1 ⊗ F̂t−1

i
√

1 − ρ1|00〉 − √
ρ1|01〉, F̂t−1 ⊗ D̂

. (10)

According to the payoff matrix, the player’s expected payoff can be computed by

zt−1(i) =
∑

j∈�t−1(i)

zt−1(Xi , Xj )

=
∑

j∈�t−1(i)

R|〈ψf,j |00〉|2 + S|〈ψf,j |01〉|2 + T |〈ψf,j |10〉|2 + P |〈ψf,j |11〉|2. (11)

In practice, the payoff matrix takes PD-like or Snowdrift (SD)-like form, described in
tables 2 and 3. In the PD-like payoff matrix, the following inequalities hold: T > R > P > S

and 2R > T + S [28]. To avoid a case that a player’s expected payoff is zero, the variable
S in table 2 takes a small value instead of zero in table 1. In addition, the Snowdrift game
assumes that two drivers are blocked by a snowdrift, each of whom is in either side of the
snowdrift. If they want to go back home, one of them or both must shovel a path through the
snowdrift. So, there exists a cost c in the SD-like payoff matrix and the following inequality
holds: T > R > S > P [28], where c = β · ωt−1(Xi , Xj ) and β is a proportional factor.
Besides, the variable ωt−1(Xi , Xj ) in two payoff matrices is calculated by the formulation
below:

ωt−1(Xi , Xj ) = ρt−1(Xi , Xj ) × Degt−1(Xj )/d(Xi , Xj ). (12)

6
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3.2. Design of LRR functions

When all players’ payoffs have been computed, each player will observe his neighbors’ payoffs
and apply a link-removing-and-rewiring (LRR) function Li(·) to change his links. A LRR
function is defined as below.

Definition 3. The LRR function Li(·) is a function of payoffs, whose output is a set with k
elements, namely an updated neighbor set �t(i) of a player Xi . It is given as below:

�t(i) = Li(ẑt−1(i)) = argmax k
j∈�t−1(i)

⋃
ϒt−1(i)

({
zt−1(j), j ∈ �t−1(i)

⋃
ϒt−1(i)

})
ẑt−1(i) = {

zt−1(j), j ∈ �t−1(i)
⋃

ϒt−1(i)
}
, ϒt−1(i) =

⋃
j∈�+

t−1(i)

�t−1(j)

�+
t−1(i) = {j |zt−1(j) � θt−1(i), j ∈ �t−1(i)}, �−

t−1(i) = �t−1(i)
∖
�+

t−1(i)

(13)

where θt−1(i) is a payoff threshold, ϒt−1(i) is called an extended neighbor set and the function
argmax k(·) is to find k neighbors with the first k largest payoffs in the set �t−1(i)

⋃
ϒt−1(i).

Here, two LRR functions L1
i (·) and L2

i (·) are designed. The function L1
i (·) always

observes an extended neighbor set formed by half neighbors of a data point Xi , α =
�0.5 × |�t−1(i)|	, where the symbol �·	 is to take an integer part of a number satisfying
that the integer part is no larger than the number. Next, the payoff threshold θ1

t−1(i) is set
by θ1

t−1(i) = findα({zt−1(i), j ∈ �t−1(i)}), where the function findα(·) is to find the αth
largest payoff in a set that contains all neighbors’ payoffs of the data point. When the LRR
function L1

i (·) is applied, the links connecting the neighbors with small payoffs are removed
and meanwhile new links are created between the data point and found players with higher
payoffs. Hence, according to equation (13), the new neighbor set is �t(i) = L1

i (ẑt−1(i)).
Unlike the LRR function L1

i (·), the LRR function L2
i (·) adjusts the number of

neighbors dynamically instead of the constant number of neighbors in L1
i (·). Therefore,

the payoff threshold θ2
t−1(i) takes the average of neighbors’ payoffs, θ2

t−1(i) =∑
j∈�t−1(i)

zt−1(i)/|�t−1(i)|. Next, the set �+
t−1(i) is formed according to equation (13),

�+
t−1(i) = {j |zt−1(j) � θ2

t−1(i), j ∈ �t−1(i)}, and then the new neighbor set is achieved
by means of the LRR function L2

i (·), �t(i) = L2
i (ẑt−1(i)). In the case, when the payoffs

of all neighbors are equal to the payoff threshold θ2
t−1(i), the output of the LRR function is

�t(i) = �t−1(i). This may be viewed as self-protective behavior for avoiding a payoff loss
due to not enough information acquired.

The LRR function Li(·) expands the view of a player Xi , i.e. it makes him observe payoffs
of players in the extended neighbor set, which provides a chance to find players with higher
payoffs around him. If no players with higher payoffs are found in the extended neighbor
set, namely min({zt−1(j), j ∈ �t−1(i)}) � max({zt−1(h), h ∈ ϒt−1(i)}), then the output of
the LRR function is �t(i) = �t−1(i). Otherwise, players with small payoffs will be removed
together with the corresponding links from the neighbor set and link set, and replaced by some
found players with higher payoff. This process is repeated till the payoffs of unlinked players
in the extended neighbor set are no larger than those of linked neighbors. Since the links
among players, namely the link set E0 in the network G0(X, E0, d), are changed by the LRR
function, the network Gt(X, Et , d) has begun to evolve over time, when t � 1:

Gt(X, Et , d) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X(t) = {Xi (t), i = 1, 2, . . . , N}
�t(i) = Li(ẑt−1(i))

Et = ⋃N
i=1 Et(i)

Et (i) = {et (Xi , Xj ) | j ∈ �t(i)}.

(14)

7
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3.3. Strength of links updating

After the LRR function is applied, the strength of links of players needs to be formed and
adjusted. The new strength of links of a player Xi ∈ X is formed by means of the below
formulation:

ρt (Xi , Xj ) =

⎧⎪⎨
⎪⎩

∑
h∈�t−1(i)\{�t−1(i)

⋂
�t (i)} ρt−1(Xi , Xh)

|�t(i)\{�t−1(i)
⋂

�t(i)}| j ∈ �t(i)\{�t−1(i)
⋂

�t(i)}

ρt−1(Xi , Xj ) otherwise.

(15)

Then, the player adjusts the strength of links as follows. First, he finds a neighbor Xm with the
maximal payoff in his neighbor set:

m = argmax
j∈�t (i)

({zt−1(j), j ∈ �t(i)}). (16)

Next, the strength of link ρt (Xi , Xj ), j ∈ �t(i) is taken as its square root and the player Xm’s
strength of the link becomes negative:{{√

ρt (Xi , Xj ), j ∈ �t(i)
}

√
ρt (Xi , Xm) = −√

ρt (Xi , Xm), m ∈ �t(i)
(17)

Further, let Avet (i) = (
∑

j∈�t (i)

√
ρt (Xi , Xm))/|�t(i)|; thus, the updated strength of the link

is

ρt (Xi , Xj ) = (2 × Avet (i) − √
ρt (Xi , Xj ))

2, j ∈ �t(i). (18)

The above-mentioned method is a variant of the Grover iteration G in the quantum search
algorithm [3], a well-known algorithm in quantum computation, which is a way to adjust the
probability amplitude of each term in a superposition state. By adjustment, the probability
amplitude of the wanted is increased, while the others are reduced. This whole process may be
regarded as the inversion about average operation [3]. For our case, each strength of the link is
taken as its square root first, and then the average Avet (i) of square roots is computed. Finally,
all values are inverted about the average. There are three main reasons why we selected the
modified Grover iteration to update the strength of links: (a) the sum of updated strength of
links retains one,

∑
j∈�t (i)

ρt (Xi , Xj ) = 1, (b) certain strength of links between a player and
his neighbors is much larger than the others, ρt (Xi , Xj ) 
 ρt (Xi , Xh), h ∈ �t(i)\j , after the
strength of links is updated and (c) it helps players’ payoffs to follow a power law distribution,
in which only a few players’ payoffs are far larger than others’ in the end of iterations.

Besides, the process that all players adjust their strength is order irrelevant, because the
strength of links of all players is updated synchronously, and the network is a directed network,
so the strength cannot be overridden by other players. When the strength of links of each
player has been updated, an iteration is completed. In conclusion, when t � 1, the structure
of network representing connections among players begins to evolve over time.

4. Discussions

In this section, first the relationship between the number of nearest neighbors and the number
of clusters is discussed, and then how the cost in the SD-like payoff matrix influences the
results is analyzed, which provides a way to choose the proportional factor. Finally, the total
payoffs based on two different payoff matrices are compared and the relationship between the
total payoffs and the rates of convergence of algorithms is explained.
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Figure 2. The number of nearest neighbors versus the number of clusters. (a) Six clusters are
obtained, when the number of nearest neighbors is k = 9, (b) four clusters, when k = 12 and (c)
three clusters, when k = 16.

4.1. Number of nearest neighbors versus the number of clusters

The number k of nearest neighbors represents the number of neighbors to which a data point
(player) Xi ∈ X connects. For a dataset, the number k of nearest neighbors determines the
number of clusters in part. Generally speaking, the number of clusters decreases inversely
with the number k of nearest neighbors. For example, when the number k of nearest neighbors
is small, it is indicated that the player Xi connects to only a few neighbors. At this time only
those not-too-distance neighbors can be observed by the LRR function, which means that the
elements in the union of the extended neighbor set ϒt−1(i) and the neighbor set �t−1(i) are
few. Therefore, when the evolution of the network formed by players is ended, many small
clusters are established among data points. On the other hand, a big number k of nearest
neighbors provides more neighbors for each player, as it specifies that the cardinality of the
union is larger than that when a small k is taken. This means that more neighbors can be
observed and explored by the LRR function, so that big clusters containing more data points
are formed.

For a dataset, the clustering results at the different number k of nearest neighbors have
been illustrated in figure 2, in which each data point only connects to one of its neighbors who
has the largest strength of link, and clusters are represented by different signs. As is shown in
figure 2, it can be found that only a few data points receive considerable links, whereas most
of the data points have only one link. This implies that when the structure of network tends to
stability, the network, if only the links with the largest strength are remained, is characterized
by the scale-free network [29], i.e. winner takes all. Besides, in figure 2(a), six clusters are
obtained by the clustering algorithm, when k = 9. As the number k of nearest neighbors
rises, four clusters are obtained when k = 12 and three clusters when k = 16. So, if the exact
number of clusters is not known in advance, different numbers of clusters may be achieved by
adjusting the number of nearest neighbors in practice.

4.2. Effect of the cost c in the SD-like payoff matrix

In the Snowdrift game, if the cost is too high, the SD-like payoff matrix recovers the PD-like
payoff matrix [28]. Therefore, the proportional factor β is restricted in an interval (0, 0.5].
However, different costs will bring about the changes of the payoff matrix, which means that
different clustering results will be produced even in the same algorithm. Figure 3 illustrates
how the clustering results change at the different number k of nearest neighbors when the
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Figure 3. The effect of the cost for the clustering results. (a) The results of the algorithm using
the SD-like payoff matrix at different number k of nearest neighbors. (b) The mean and variance
corresponding to each curve in (a).

proportional factor β takes different values, in which the clustering results are represented by
clustering accuracies. The definition of clustering accuracy is given below.

Definition 4. Clusteri is the label which is assigned to a data point Xi in a dataset by the
algorithm, and labeli is the actual label of the data point Xi in the dataset. So the clustering
accuracy is [30]:

accuracy =
∑N

i=1 λ(map(clusteri ), labeli )

N

λ(map(clusteri ), labeli ) =
{

1 if map(clusteri ) = labeli
0 otherwise

(19)

where the mapping function map(·) maps the label got by the algorithm to the actual label.

Clustering accuracy is an important evaluation criterion for clustering algorithms, which
reflects the level of matches between the actual labels in a dataset and the labels assigned by
a clustering algorithm, so that the goal of a clustering algorithm is to obtain higher clustering
accuracies.

As is shown in figure 3, it can be seen that similar results are obtained by the algorithm at
different costs, and the best results are produced when k = 7 and k = 8, but from figure 3(b),
the clustering result with the largest mean and the least variance is yielded when β = 0.3.
Also, as mentioned above, the high cost leads to the recovery of the SD-like payoff matrix, so
the proportional factor β = 0.2 or β = 0.3 is recommended.

4.3. Total payoffs and the rate of convergence

In this subsection, first the total payoffs of algorithms using the PD- or SD-like payoff matrix
are compared respectively, and then the differences between total payoffs are explained.
Later, the rates of convergence of algorithms are discussed when two LRR functions are
applied respectively, and further the impact for the rates of convergence is analyzed in two
payoff matrices.
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Figure 4. The total payoffs versus the rates of convergence. (a) Total payoffs of algorithms in the
case of LRR function L1

i (·); (b) total payoffs of algorithms in the case of LRR function L2
i (·).

Remark 1. The algorithms are named as follows. For example, the name of an algorithm,
QGC1PDL1, denotes that the case 1, PD-like payoff matrix and the LRR function L1

i (·) are
employed in this algorithm.

If all other conditions are fixed, an algorithm will form two versions due to using PD- or
SD-like payoff matrix, and naturally this will bring different results. As compared with the
PD-like payoff matrix, the payoff P and S in the SD-like payoff matrix have a reverse order
in the payoff inequality. In all algorithms, the relationship between the total payoffs and the
number of iterations is drawn in figure 4. From figure 4, it can be found that the total payoffs
in the algorithms with the SD-like payoff matrix are larger than that of the algorithms with the
PD-like payoff matrix no matter which LRR function is selected.

According to two payoff matrices, using equation (11), each player’s expected payoff can
be calculated in two cases of strategies, respectively, as below:

case 1:

PD : zt (Xi , Xj ) =

⎧⎪⎨
⎪⎩

1

4
(0.6ω + 0.01ω + ω + 0.2ω) = 0.4525ω

1

2
(0.6ω + 0.01ω) = 0.305ω

(20)

SD : zt (Xi , Xj ) =

⎧⎪⎪⎨
⎪⎪⎩

1

4

(
ω − c

2
+ ω − c + ω + 0.01ω

)
= 1

4

(
3.01 − 3α

2

)
ω

1

2

(
ω − c

2
+ ω − c

)
= 1

2

(
2 − 3α

2

)
ω;

(21)

case 2:

PD : zt (Xi , Xj ) =

⎧⎪⎨
⎪⎩

ρ1ρ20.6ω + ρ2(1 − ρ1)0.01ω

+ ρ1(1 − ρ2)ω + (1 − ρ1)(1 − ρ2)0.2ω

(1 − ρ1)0.6ω + ρ10.01ω

(22)
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SD : zt (Xi , Xj ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1ρ2

(
ω − c

2

)
+ ρ2(1 − ρ1)(ω − c)

+ ρ1(1 − ρ2)ω + (1 − ρ1)(1 − ρ2)0.01ω

(1 − ρ1)
(
ω − c

2

)
+ ρ1(ω − c).

(23)

Comparing the expected payoffs in two cases, it can be observed that when the SD-like
payoff matrix is used, the expected payoff is larger than that of using PD-like payoff matrix
regardless of cases of strategies. Therefore, this explains why differences between total payoffs
are produced.

Besides, figure 4 not only describes the changes of total payoffs of algorithms but also
reflects the rates of convergence of algorithms. When the total payoffs remain constant or
fluctuate slightly, this means that the algorithms have converged. At this time, players do
not frequently apply the LRR function to change his neighbors but reach a stable state. As
mentioned in section 3.2, the LRR function L2

i (·) only can observe an extended neighbor set
formed by those larger-than-average neighbors in contrast to an extended neighbor set built by
half neighbors in the LRR function L1

i (·). Generally speaking, for the same k, the median of
payoffs is smaller than or equal to the mean, i.e. θ1

t−1 � θ2
t−1, which means that the exploring

area of the LRR function L1
i (·) is larger than that of the LRR function L2

i (·). So, as a whole,
the algorithms with the LRR function L2

i (·) are slightly faster than that with the LRR function
L1

i (·), i.e. the number of iterations that the former type of algorithms needs is a little less.
Furthermore, in the algorithms, a phenomenon that the strategies Ĥ and F̂t−1 are more

likely used by players in a high-density area while the strategy D̂ is used by those in a
low-density area is always observed. This is because usually they are mutual neighbors in
the high-density area on the weighted and directed knn network, but in the low-density area
this case is reverse. As a result, the differences of payoffs between the high-density and
low-density areas are enlarged rapidly for the expected payoff in the strategy profile (Ĥ , Ĥ )
or (F̂t−1, F̂t−1) is higher than that in other strategy profile, and this also causes the distribution
of players’ payoffs follow a power-law distribution, which is why algorithms converge fast.

5. Simulations

To evaluate these clustering algorithms, six datasets are selected from the UCI repository
[31], which are Soybean, Iris, Wine, Sonar, Ionosphere and Breast cancer Wisconsin datasets,
and the simulations are completed on them. In this section, first these datasets are briefly
introduced, and then the simulation results are demonstrated.

The original data points in the above datasets are all scattered in high-dimensional spaces
spanned by their features which are the individual measurable heuristic properties of the
phenomena being observed, where the description of all datasets is summarized in table 4. As
for Breast dataset, some lost features are replaced by random numbers, and the Wine dataset
is standardized. Finally, the algorithms are coded in Matlab 6.5.

Throughout all simulations, data points in a dataset are viewed as players in quantum
games whose initial positions are taken from the dataset. Next, the initial network representing
relations among data points are created according to definition 1, after a distance function is
selected, which only needs to satisfy that the more similar the data points, the smaller the
output of the function is. In the simulations, the distance function is employed as follows:

d(Xi , Xj ) = exp(‖Xi − Xj‖/2σ 2), i, j = 1, 2, . . . , N, (24)

where the symbol ‖ · ‖ represents the L2-norm. The advantage of this function is that it not
only satisfies our requirements but also overcomes the drawbacks of Euclidean distance. For
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Table 4. Description of datasets.

Dataset Instances Features Classes

Soybean 47 21 4
Iris 150 4 3
Wine 178 13 3
Sonar 208 60 2
Ionosphere 351 32 2
Breast 699 9 2

instance, when two points are very close, the output of Euclidean distance function approaches
zero, which may make the computation of payoff fail due to the payoff approaching infinite.
Nevertheless, when equation (24) is selected as the distance function, it is more convenient
to compute the players’ payoffs, since its minimum is 1 and the reciprocals of its output are
between 0 and 1, 1/d(Xi , Xj ) ∈ [0, 1].

In addition, the distance between a player Xi and itself, d(Xi , Xi ), is 1 according to the
defined distance function, which means that initially he is one of his k nearest neighbors. So
there is an edge between the player Xi and himself, namely a self-loop. Additionally, the
parameter σ in equation (24) takes 1. As is analyzed in section 4.2, the cost c in SD-like
payoff matrix is set by c = 0.2ωt(Xi , Xj ) in the related clustering algorithms.

The clustering algorithms are applied on the six datasets, respectively. Because two cases
of strategies are designed and the different payoff matrices and LRR functions are employed,
the algorithms are run on every dataset at the different number k of nearest neighbors. As
is analyzed in section 4.1, for a dataset the number k of clusters decreases inversely with the
number of nearest neighbors. When a small k is selected, it is possible that the number of
clusters is larger than the preset number of the dataset, after the algorithm is ended. So a
merging subroutine is called to merge unwanted clusters, which works in this way. At first,
the cluster with the fewest data points is identified, and then it is merged to the cluster whose
distance between their centroids is smallest. This subroutine is repeated till the number of
clusters is equal to the preset number.

The clustering results obtained by these algorithms are compared in figure 5, in which
each point represents a clustering accuracy. As is shown in figure 5, the similar results are
obtained by these algorithms at different number of nearest neighbors, but almost all the best
results are obtained by the algorithms using the LRR function L1

i (·).
Further, we show a simple comparison with three other algorithms: Kmeans [32, 33],

PCA-Kmeans [33], LDA-Km [33]. The Kmeans algorithm is a popular clustering algorithm
because it is easy to implement. It begins with k randomly chosen cluster centers, and then
assigns each data point in a dataset to the closest cluster center. Next, the cluster centers are
recomputed according to the current cluster memberships. This process will be repeated till a
convergence criterion is met. However, its major problem is sensitive to the selection of the
initial partition [19]. The PCA-Kmeans algorithm consists of two steps: (1) reducing the data
dimension by principal component analysis (PCA), (2) clustering data points by the Kmeans
algorithm. Ding et al combine linear discriminant analysis (LDA) with the Kmeans algorithm
and construct a new clustering algorithm called ‘LDA-Km’. In the LDA-Km algorithm,
Kmeans is used to generate class labels, while LDA is used to do subspace selection. Finally,
in the subspace selection process, data points are clustered.

Our algorithms are established on the model of quantum games, so data points in datasets
are considered as players. This idea is totally different from traditional clustering algorithms,
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Figure 5. Comparison of clustering accuracies at different k in all proposed algorithms.

Table 5. Comparison of clustering accuracies of algorithms.

Algorithm Soybean Iris Wine Sonar Ionosphere Breast

QGC1PDL1 97.9% 92.0% 94.9% 54.8% 75.5% 95.4%
QGC1SDL1 95.6% 90.7% 96.6% 56.3% 74.1% 95.4%
QGC2PDL1 95.6% 91.3% 96.6% 55.8% 73.8% 95.4%
QGC2SDL1 89.4% 91.3% 96.6% 55.8% 75.5% 95.3%
QGC1PDL2 95.8% 96.7% 95.5% 54.3% 74.1% 95.0%
QGC1SDL2 89.4% 90.7% 95.5% 54.3% 74.6% 95.1%
QGC2PDL2 89.4% 90.0% 95.5% 55.3% 74.6% 95.3%
QGC2SDL2 89.4% 91.3% 94.9% 55.8% 74.9% 95.1%
Kmeans [33] 68.1% 89.3% 70.2% 47.2% 71.0% –
PCA-Kmeans [33] 72.3% 88.7% 70.2% 45.3% 71.0% –
LDA-Km [33] 76.6% 98.0% 82.6% 51.0% 71.2% –

such as Kmeans and its variants, because in traditional clustering algorithms data points for
clustering are fixed, and various functions or methods are designed to find cluster centers or
separating hyperplanes, whereas in the quantum-game-based clustering algorithms data points
(players) themselves choose their clusters, which leads clusters to be formed automatically
during quantum games. In conclusion, traditional clustering algorithms do it from outside,
while ours are from inside. Furthermore, our algorithms do not need to choose cluster centers at
the beginning, so there does not exist the problem that is ‘sensitive to the selection of the initial
partition’. Besides, distances between data points are commonly used as the measurement of
their similarities in the Kmeans algorithm and its variants. However, when similarities are
measured in our algorithms, not only distances between data points but also their degrees and
the strength of links are integrated, which provides more information for the measurement
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of similarities. Later, according to payoffs in quantum games, players apply a LRR function
to change the structure of the network, which makes the clusters emerge. As a result, better
clustering accuracies are obtained by our algorithms.

Table 5 displays the clustering accuracies of our algorithms and the other three algorithms
using the datasets in table 4. It can be observed that on almost all datasets the quantum-
game-based clustering algorithms have the best clustering accuracies. Only on the Iris dataset,
the LDA-Km algorithm is better than ours, but our result is close to it as well. The Iris
dataset contains three clusters, one of which is far from the other two, so data points in it can
be clustered easily and correctly. The other clusters in the Iris dataset, however, are mixed
partly in their boundaries, which brings a difficulty for clustering. These mixed boundary
points may be assigned to different clusters by algorithms, which is why the clustering
accuracies of algorithms are various. It is more difficult to cluster data points in the Sonar and
Ionosphere dataset, because in these two datasets plenty of data points belonging to different
clusters are mixed together. Therefore, the clustering accuracies of algorithms in them are
not high, and it is rather hard to improve the clustering accuracies even by several percents.
From the fifth and sixth columns in table 5, it can be seen that the quantum-game-based
clustering algorithms are better than other algorithms, which indicates the effectiveness of our
algorithms.

6. Conclusions

The enormous successes gained by quantum algorithms makes us realize that it is possible
that quantum algorithms can obtain solutions faster and better than classical algorithms for
some problems. Therefore, we combine quantum game with the problem of data clustering,
and establish clustering algorithms based on quantum games. In the algorithms, data points
for clustering are regarded as players who can make decisions in quantum games. On a
weighted and directed knn network that represents the relations among players, each player
uses quantum strategies against every one of his neighbors in a 2 × 2 entangled quantum
game, respectively. We design two cases of strategies: (i) one plays the strategy Ĥ , the
other plays the strategy Ĥ or D̂, (ii) one plays the strategy F̂t−1, the other plays the strategy
F̂t−1 or D̂ according to the strength of links, in each of which players’ expected payoffs are
calculated based on the PD- and SD-like payoff matrices, respectively. According to the
neighbors’ payoffs in one’s neighbor set, each player applies a LRR function (L1

i (·) or L2
i (·))

to change his neighbors, i.e. the links connecting to neighbors with small payoffs are removed
and then new links are created to those with higher payoffs. Later, the Grover iteration G
is employed to update the strength of links between him and his neighbors. In the process
of playing quantum game, the structure of the network formed by players tends to stability
gradually. In other words, each player always connects to one of his neighbors with the largest
strength or jumps among some neighbors with the largest strength in a constant period. At this
time, if only the links with the largest strength are left but all other links are removed among
players, the network naturally divides into several separate parts, each of which corresponds
to a cluster.

Additionally, in simulations, it can be found that the total expected payoffs of algorithms
using the SD-like payoff matrix are higher than that of algorithms using the PD-like payoff
matrix. Later, the reason is explained. Further, we observe that the rates of convergence of the
algorithms employing the LRR function L2

i (·) are faster slightly than that of the algorithms
employing the LRR function L1

i (·), because more areas are explored by the LRR function
L1

i (·), but this brings better clustering results. In the case when the exact number of clusters
is unknown in advance, one can adjust the number k of nearest neighbors to control the
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number of clusters, where the number of clusters decreases inversely with the number k of
nearest neighbors. Finally, the clustering algorithms are evaluated on six real datasets, and
simulation results have demonstrated that data points in a dataset are clustered reasonably and
efficiently.
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